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Abstract: In order to ensure maintenance of a certain quality level for a product, choosing a suitable life

test plan is immensely essential. Since life testing includes as well as impacts various costs, it is important

to design a life testing plan incorporating the relevant costs. In this paper, a model is proposed to obtain an

optimal life testing plan for non-repairable products sold under general rebate warranty. The proposed model

determines the optimal plan by minimizing the suitable costs involved. Type-I generalized hybrid censoring

setup for products having Weibull distributed lifetimes is considered for the model presented. Considering

both producer’s and consumer’s risk, a constrained optimization approach is followed and appropriate anal-

ysis techniques are employed in obtaining the optimal solution. An extensive simulation study is performed

for numerical illustration. In order to analyze the sensitivity of the optimal solution due to mis-specification

of parameter values and cost components, a well designed sensitivity analysis is incorporated using parameter

estimates from real life hybrid censored data set.

Keywords: Life testing plan, Weibull distribution, Type-I generalized hybrid censoring, General rebate

warranty, Constrained optimization.



1 Introduction

Acceptance sampling as an approach for industrial quality control has widespread usage across man-

ufacturing industries. The selection of a lot or batch of raw materials or any other component units is

usually decided using this technique. Wu et al (2015) mentioned it as a technique that shrinks the gap

between expected and the actual quality of manufactured goods. The quality of a product has multifaceted

importance for a business. Quality helps in strengthening customers’ trust for a product and thereby impact

sales which explains the importance of acceptance sampling plans and its extensive usage in manufacturing

industry. Acceptance sampling plan can be simplistically described as follows: Consider fresh arrival of

a shipment of raw materials at a manufacturing unit. To test the pre-specified quality characteristics, a

sample is drawn from the shipment. From the information derived upon testing the sample, a decision is

reached on whether to accept or reject the lot.

For consumer durable products, lifetime is one of the indispensable quality attribute. It should be kept

in mind that lifetime as a quality attribute is not an instantaneously acquired dimensional measurement.

Censoring is usually applied to collect lifetime data (Wu and Huang, 2017). Since censoring techniques

are employed while testing lifetime, the response values are not observable for all the units under study.

Among all the censoring schemes, Type-I and Type-II censoring schemes are most commonly discussed

in life testing literature. The two censoring schemes differ in the criterion through which the experiment

is terminated. Type-I censoring scheme is terminated at a pre-decided time X0, hence it is also called

time censoring. On the other hand Type-II censoring, which is popularly known as failure censoring, is

terminated after a pre-chosen number of failures (r) are observed. Combining the two censoring schemes,

Epstein (1954) came up with hybrid censoring which later came to be known as Type-I hybrid censoring. In

this censoring scheme, if n identical units are put on test having ordered lifetimes X1:n, ..., Xn:n respectively,

then the experiment is aborted either when a pre-chosen number r < n out of n items has failed or when

a pre-determined time X0 has elapsed. Therefore, the experiment can be terminated at a random time

X∗ = min{Xr:n, X0}. It must be noted that when r = n, Type-I hybrid censoring transforms to Type-I

censoring scheme whereas when X0 → ∞, it transforms to Type-II censoring scheme. One of the following

two types of observations can be witnessed under Type-I hybrid censoring scheme.

Case I: {X1:n < ... < Xr:n} if Xr:n < X0.

Case II: {X1:n < ... < Xd:n < X0} if d+ 1 ≤ r < n and X0 ≤ Xr:n.

Figure 1: Schematic illustration of Type-I hybrid censoring scheme.
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Case I

X1:n
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X2:n

2nd failure

Xr:n
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X0
. . .

Case II

X1:n

1st failure

X2:n

2nd failure

Xd:n

dth failure

X0

Experiment stops

. . .

The problem that arises out of Type-I hybrid censoring is that, there is a high chance of observing

very few or no failures if the mean lifetime of experimental units is greater than the censoring time. This

leads to the introduction of Type-II hybrid censoring scheme by Childs et al (2003) which considered

X∗ = max{Xr:n, X0} as the termination time. The test completion may take a very long time in Type-II

hybrid censoring scheme. To overcome the limitations of both Type-I and Type-II hybrid censoring

schemes, Chandrasekar et al. (2004) has come up with Type-I and Type-II generalized hybrid censoring

schemes. Under Type-I generalized hybrid censoring scheme (GHCS), the experiment is terminated at

X∗ = min{Xr:n, X0} only if l failures are observed before time X0. If l failures occur after time X0 has

elapsed, then the experiment is terminated at Xl:n. One of the following three types of observations can be

witnessed under Type-I generalized hybrid censoring scheme.

Case I: {X1:n < ... < Xl:n} if Xl:n > X0.

Case II:{X1:n < ... < Xr:n} if Xr:n < X0.

Case III: {X1:n < ... < Xd:n < X0} if l ≤ d, d+ 1 ≤ r < n and X0 ≤ Xr:n.

Figure 2: Schematic illustration of Type-I generalized hybrid censoring scheme.
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Case III
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. . .

Several costs are associated with or impacted by a life test plan, hence minimizing the average aggregate

costs involved is one of the most viable choices for a decision maker. Although the literature has paid enough

attention towards development of life testing plans through a combination of different methods and censoring

schemes, the appropriate choices of costs from a business point of view has seldom being dealt with. Gupta

(1962) developed life test sampling plan for normal and lognormal distribution where experiment time is fixed

in advance. Schneider (1989) under the assumption of lognormal and Weibull lifetimes has developed failure

censored life test plans. Balasooriya and Balakrishnan (2000) has presented reliability sampling plan for the

lognormal distribution based on progressively censored samples. Battacharya et al (2015) has minimized

the asymptotic variance considering both producer’s and consumer’s risks under Weibull lifetimes. Dube et

al (2011) has estimated the parameters of hybrid censored lognormal distribution using various estimation

approaches and has proposed a life testing plan considering a pre-decided fixed total cost. Lin et al (2008)

has employed a quadratic loss function under Bayesian setup to develop life testing plans for Type-I and

Type-II hybrid censored samples. More recently, Sen et al (2018) under generalized hybrid censoring setup

has used asymptotic variance minimization approach to determine optimal life test plan. Sen et al (2018)

has proposed two solution approaches for Type-I generalized hybrid censoring, neither of them takes costs

due to acceptance or rejection into consideration.

While designing a life testing plan from a cost perspective it is necessary to choose appropriate costs

for arriving at a sampling plan which suffices the purpose. For a consumer durable product with warranty,

it is rationale to have warranty cost in the design scheme. Employing a Bayesian approach Kwon (1996)

is the first paper to include warranty cost as lot acceptance cost under Type-II censoring setup arguing

the impact of acceptance of a lot on its future warranty. Kwon (1996) has chosen general rebate warranty

to determine the acceptance cost. General rebate warranty is a warranty policy which combines the two

most elementary warranty policies widely used for non-repairable products, free replacement warranty and
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pro-rata warranty. In free replacement warranty, the warranty services can be availed for free during the

warranty period; whereas, in case of pro-rata warranty a proportional warranty fee is charged on a pro-rata

basis. Later, Huang et al (2008), Tsai et al (2008), and Hsieh and Lu (2013) has adopted the idea of inclusion

of warranty cost as acceptance cost under Type-II censoring setup. Hsieh and Lu (2013) has argued that for

products sold under warranty, the extent of failure during warranty period influences production decisions

and affects the acceptance cost for life testing significantly. Although warranty cost in life testing under

Type-II censoring scheme has received some attention in the literature, but to the best of our knowledge

warranty cost has not been included for designing life testing plans in any other censoring setup.

Frequent use of general rebate warranty and hybrid censoring scheme can be witnessed in automobile

industry which gives practical viability to the inclusion of warranty costs while designing a life test plan.

General rebate warranty can be seen widely in use for automobile products such as tyres, car batteries etc.

Blachre et al (2015) has mentioned the use of different censoring schemes including hybrid censoring scheme

in life testing of mechanical bearings. The paper has also mentioned that even though internal calculation

tool based on physical models are used in manufacturing units, life testing using various censoring schemes

is carried out to validate those models and obtain insights on the performance of the lot. The real life

hybrid censored data set from Lawless (2005) used in this paper for the purpose of numerical illustration,

also confirms the use of hybrid censoring in automobile industry. This has served as a practical motivation

to design an appropriate life testing plan (LTP) combining generalized hybrid censoring scheme and general

rebate warranty policy. It is to be noted that generalized hybrid censoring is a more generic censoring scheme

which includes hybrid censoring as a special case and also overcomes the limitations of hybrid censoring.

While warranty cost is taken as the lot acceptance cost for this study, the aggregate cost considered also

comprises of three other costs which emerges from the literature, namely: rejection cost, time consumption

cost, and inspection cost. The cost components are discussed in more detail in Section 3.

In this paper, we determine optimum life test plans (LTP) in presence of Type-I generalized hybrid

censoring using a cost function approach for products sold under general rebate warranty scheme having

Weibull lifetimes. The gap in the literature that we are trying to address is summarized in Figure 3. The

approach followed in this paper in determining a life test plan accounts for the producer’s and consumer’s

risk through a constrained optimization. The rest of the paper is as follows: In Section 2, we discuss the

framework in detail. The relevant costs required to formulate the cost minimization problem is discussed

in Section 3. In Section 4 we discuss the approach followed to obtain an optimum solution. An extensive

simulation study conducted for the paper is discussed in Section 5. In Section 6 we discuss the sensitivity

analysis conducted for the paper using Lawless (2003) data set pertaining to locomotive controls. We put

down our conclusion in Section 7.

Figure 3: Diagrammatic representation of the surveyed literature.
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2 Model

2.1 Weibull distributed lifetime

If the lifetime X of a testing unit follows Weibull distribution with probability density function (pdf),

fX(x) given by

fX(x) = kλkxk−1e−(λk)
k

;x > 0, (2.1)

where k > 0 and λ > 0 are the respective shape and scale parameters. The corresponding cumulative

distribution function (CDF), FX(x) can be written as

FX(x) = 1− e−(λx)
k

;x > 0. (2.2)

If we consider the transformation T = lnX, the corresponding CDF of the of the extreme value distribution

of T is given by

FT (t) = 1− e−e
t−µ
σ ;−∞ < t <∞, (2.3)

where −∞ < µ < ∞ and σ > 0 are the respective location and scale parameters given by µ = − lnλ and

σ = 1
k . Let X1, X2, ..., Xn be the lifetimes of n units to be put on test which follow Weibull distribution given

by (2.2). Hence T1, T2, ..., Tn will be the corresponding log-lifetimes which follow extreme value distribution

given by (2.3). Suppose the ordered lifetimes of these n units be given by T1:n ≤ T2:n ≤ ... ≤ Tn:n. If we

consider Type-I generalized hybrid censoring framework, then the two random variables representing the

number of failures and log-censoring time can be denoted by D and τ = min(Tr:n, T0) respectively, where
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T0 = lnX0 and X0 is the censoring time. Accordingly the data can be represented by (T1:n, T2:n, ..., TD:n, D).

The likelihood function can be written as

L(µ, σ) ∝
d∏
i=1

fT (ti:n)(1− FT (τ0))
n−d

, (2.4)

where ti:n, d, and τ0 are the observed values of Ti:n, D, and τ respectively. Using results from Park and

Balakrishnan (2009), the Fisher information matrix can be expressed as

`(θ) = `l(θ) + `T0∧r(θ)− `T0∧l(θ)

where,

`l(θ) =

∫ ∞
−∞

(
∂

∂θ
lnhT (t)

)́(
∂

∂θ
lnhT (t)

)
l∑
i=1

fi:n(t)dt;

`T0∧r(θ) =

∫ T0

−∞

(
∂

∂θ
lnhT (t)

)́(
∂

∂θ
lnhT (t)

)
r∑
i=1

fi:n(t)dt;

`T0∧l(θ) =

∫ T0

−∞

(
∂

∂θ
lnhT (t)

)́(
∂

∂θ
lnhT (t)

)
l∑
i=1

fi:n(t)dt.

and hT (t) = 1
σ e

t−µ
σ and fi:n(t) = i

( n
i
)

1
σ e

t−µ
σ −(n−i+1)e

t−µ
σ

(
1− e−e

t−µ
σ

)i−1
are the hazard and density

function of T and Ti:n respectively. By the notation a ∧ b, the meaning conveyed is a or b whichever occurs

earlier. On simplification, the Fisher information matrix becomes

`(θ) =

∫ ∞
−∞

(
∂

∂θ
lnhT (t)

)́(
∂

∂θ
lnhT (t)

)
l∑
i=1

fi:n(t)dt+

∫ T0

−∞

(
∂

∂θ
lnhT (t)

)́(
∂

∂θ
lnhT (t)

)
r∑

i=l+1

fi:n(t)dt.

On further simplification, the Fisher information matrix will be of the following form

`(θ) =

(
`11(θ) `12(θ)

`21(θ) `22(θ)

)
.

where,

`11(θ) =
l

σ2
+

1

σ2

∫ T0

−∞

r∑
i=l+1

fi:n(t)dt,

`22(θ) =
1

σ2

(∫ ∞
−∞

(
1 +

t− µ
σ

)2 l∑
i=1

fi:n(t)dt+

∫ T0

−∞

(
1 +

t− µ
σ

)2 r∑
i=l+1

fi:n(t)dt

)
,

`12(θ) = `21(θ) =
1

σ2

(∫ ∞
−∞

(
1 +

t− µ
σ

) l∑
i=1

fi:n(t)dt+

∫ T0

−∞

(
1 +

t− µ
σ

) r∑
i=l+1

fi:n(t)dt

)
.

Hence the variance-covariance matrix which is found by inverting Fisher information matrix will be of the

following form

`−1(θ) =

(
`11(θ) `12(θ)

`21(θ) `22(θ)

)
.
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2.2 Acceptance criterion

Lower specification limit (LSL) is of utmost importance when lifetime is considered as a quality attribute.

By definition, lower specification limit is the lowest level of product quality that is within the acceptable

range. If we consider lifetime as a quality attribute, then it is considered that higher the lifetime, better is

its perceived quality and hence the upper specification limit becomes immaterial. But the product should

at least last till a certain period of time so as to be in the acceptable quality range. This gives prominence

to the lower specification limit when product lifetime is considered as a quality attribute.

Suppose the actual one-sided lower specification limit be L pertaining to items to be tested, then the items

with lifetimes less than L should be considered nonconforming and hence unacceptable. The lifetime of the

inspected product is assumed to be a Weibull distributed random variable X with unknown parameters. In

lieu of actual lifetime of the product, log-lifetime (T = lnX) is used, which leads to a smallest-extreme-value

distribution when lifetime is Weibull with location parameter µ and scale parameter σ. As stated earlier,

in generalized hybrid censoring scheme the experiment is conducted putting n units on test simultaneously

and the experiment is terminated at T ∗ = min{Xr:n, T0} only if l failures are observed before time T0. If l

failures occur after time T0 has elapsed, then the experiment is terminated at Xl:n. In practice, r is stated in

terms of degree of censoring q = 1− r
n . In a similar manner, l is expressed in terms of q1 = 1− l

r . Therefore,

the fraction of nonconforming items, p, can be written as p = Pr(T ≤ L′), where L′ = lnL. Using the lot

acceptance criterion derived by Lieberman and Resnikoff (1955) we get the following expression

µ̂− kσ̂ > L′; (2.5)

where µ̂ and σ̂ are the maximum likelihood estimates of µ and σ respectively and k is acceptability constant.

The statistic S = µ̂ − kσ̂ is asymptotically normal with mean E[S] = µ − kσ and variance V ar[S] =

`11(θ)+k2`22(θ)−2k`12(θ), where `11, `22 and `12 are elements of variance-covariance matrix and θ = (µ, σ).

So the standardized variate

U =
µ̂− kσ̂ − (µ− kσ)√

`11(θ) + k2`22(θ)− 2k`12(θ)
(2.6)

is also asymptotically normal with mean 0 and variance 1. Therefore using arguments from Schneider (1989),

the approximated OC curve can be represented by

L (p) = Pr(µ̂− kσ̂ > L′|p)

= 1− Φ

(
σ(up + k)√

V

)
;

(2.7)

where, V = `11(θ) + k2`22(θ) − 2k`12(θ) and up = L′−µ
σ is the pth quantile of the standard extreme value

distribution corresponding to the nonconforming fraction p = Pr((T − µ)/σ ≤ (L′ − µ)/σ) and L (p) is

decreasing in p and Φ is standard normal distribution function.

If we consider α and β as producer’s risk and consumer’s risk respectively, then by fixing points (pα, 1−α)

and (pβ , β) on the OC curve we can obtain the value of k and also n for any known value of T0, where T0 is

the log of censoring time.

The expression for k thus obtained can be written as

k =
upαz1−β − upβzα

zα − z1−β
,
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and the value of n can be found out by solving the following expression for known value of T0

V

σ2

(
zα − z1−β
upα − upβ

)2

= 1, (2.8)

where zα and z1−β are αth and (1− β)th quantiles of standard normal distribution and upα and upβ are pα
th

and pβ
th quantiles of the standard extreme value distribution corresponding to the nonconforming fractions

pα and pβ respectively.

3 Determining the cost function

Taking evidence from the literature (Kwon, 1995; Hsieh and Lu, 2013), we can arrive at four primary

costs that has been consistently discussed while designing a life testing plan. The four costs as discussed

above are as follows: 〈a〉 the cost of accepting a lot, 〈b〉 the cost of rejecting a lot, 〈c〉 the time-consumption

cost, and 〈d〉 the inspection cost. Wu et al (2007) state that warranty cost is effected by product reliability.

If we consider consumer durable products which are sold under general rebate warranty, the decision to

accept a lot effects its warranty cost. Hence while designing a life test plan for such products, it is fruitful

to keep in mind the costs related with the warranty policies (Kwon, 1995). The argument can further be

substantiated by the following diagram used to characterize warranty cost by Murthy (2007).

Figure 4: Characterization of warranty cost.

Manufacturer Customer

Product usage

Product performance

Warranty cost

Product reliabilityWarranty policy

Hence warranty cost can be substituted for the cost of acceptance of a lot (Kwon, 1996; Huang et al, 2008;

Tsai et al, 2008; Hsieh and Lu, 2013). The warranty cost thus adopted as acceptance cost is a combination

of two warranty policies, free-replacement warranty and pro-rata warranty. The combination of the two

warranty policies is best known in the literature as general rebate warranty. The mathematical expression

for general rebate warranty is given below

c∗a(x) =


ca x < w1

ca
w2−x
w2−w1

w1 ≤ x ≤ w2

0 x > w2.

(3.1)
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The expression above states that if the failure occurs before w1, the cost due to free replacement warranty

is ca. On the other hand if the failure occurs after time w1 but before w2 then the cost due to pro-rata

warranty is in proportion to the difference between failure time and w2, which is decreasing in nature. If

the failure occurs after w2 no cost due to warranty is being incurred. Since we use log lifetimes, therefore

according to general rebate warranty policy the cost of accepting an item with log-lifetime t is

c∗a(t) =


ca t < lnw1

ca
w2−et
w2−w1

lnw1 ≤ t ≤ lnw2

0 t > lnw2.

(3.2)

Therefore the expected warranty cost per unit is given by

w(θ) = ca

(
w2FT (lnw2)− w1FT (lnw1)

w2 − w1
− 1

w2 − w1

∫ lnw2

lnw1

etfT (t)dt

)
. (3.3)

Hence the expected warranty (acceptance) cost if n out of N items are put on test is given by

Cw = (N − n)w(θ)

(
1− Φ

(σ(up + k)√
V

))
. (3.4)

From the literature, rejection cost usually is taken as cost due to units that are not tested (Hsieh and Lu,

2013). Thus if cr is the cost per unit for the items that are not put on test, then the average cost of rejecting

a lot is given by

Cr = (N − n)crΦ
(σ(up + k)√

V

)
. (3.5)

The expression for expected log-time of the test can be written as

E[τ ] =

∫ ∞
0

tfl:n−1(t; θ)dt+

∫ T0

0

(
Fl:n−1(t; θ)− Fr:n−1(t; θ)

)
dt; (3.6)

where, Fr:n−1(t; θ) =
∑n−1
i=r

(
n−1
i

)
FT (T0)

i(
1− FT (T0)

)n−i−1
.

Thus if ct be the cost per unit, the expression for expected time consumption cost is given by Ct = ctE[τ ].

Also if ci is the unit cost of inspection, the average cost of inspection can be written as Ci = nci. The

aggregate cost function is

TC(n, r, l, T0) = Cw + Cr + Ct + Ci

= (N − n)w(θ)

(
1− Φ

(σ(up + k)√
V

))
+ (N − n)crΦ

(σ(up + k)√
V

)
+ ctE[τ ] + nci

= (N − n)

(
w(θ) +

(
cr − w(θ)

)
Φ
(σ(up + k)√

V

))
+ ctE[τ ] + nci

Therefore, the optimal design problem can be expressed as follows:

minimize TC(n, r, l, T0)

subject to
V

σ2

(
zα − z1−β
upα − upβ

)2

− 1 = 0.

The equality constraint as also shown in (2.8) ensures that the already agreed upon values pertaining to

producer’s and consumer’s risks are being maintained.

10



4 Determining the optimal solution

The nature of the optimization problem mentioned in Section 3 for determining the optimal life testing

plan is fairly complex. The problem being both non-linear and mixed-integer enhances the complexity of

the problem. Due to the complex nature of the mathematical functions involved in framing various costs

that constitute the objective function, integer inputs for the values of n, r and l are required. Hence to

reduce the complexity of the problem, instead of using n as a decision variable we use pn = n
N . To retain

the integer nature of n, we replace n with bpnNc, where b.c represents greatest integer or the floor function.

Similarly, instead of r as a decision variable we use the degree of censoring q = 1 − r
n and instead of l use

q1 = 1 − l
r and replace r and l with b(1− q)nc and b(1− q1)rc respectively to retain their discrete nature.

The continuous nature of pn (pn ∈ [0, 1]), q (q ∈ [0, 1]) and q1 (q1 ∈ [0, 1]) transforms the problem to a

nonlinear programming problem where the traditional algorithms such as augmented Lagrangian can be

used to find the optimal solution. Therefore the transformed problem can be written as follows

minimize TC(pn, q, q1, T0)

subject to
V

σ2

(
zα − z1−β
upα − upβ

)2

− 1 = 0.

In order to extract the optimal value of n, r and l from the solution obtained by solving the above problem

we again take the help of the floor function. The procedure followed to solve the problem can be summarized

using the following steps:

Algorithm 1: Finding the optimal design.

Input: p, α, β, pα, pβ , N , w1, w2 and unit costs

Output: n∗, r∗, l∗, X0
∗, and TC∗

1 Define functions FT , fT and L (p)

2 Fix (α, pα) and (β, pβ) in L (p) to find k and and the constraint function

3 Define Cw, Cr, Ct and Ci and hence the objective function TC(n, r, l, T0)

4 Consider pn = n
N as a decision variable and subsequently q = 1− r

n and q1 = 1− l
r

5 Replace n with bpnNc, r with b(1− q)nc and l with b(1− q1)rc transform the objective function

from TC(n, r, l, T0) to TC(pn, q, q1, T0)

6 Minimize the objective function with respect to the given constraint to find the optimal values of

(pn
∗, q∗, q1

∗, T0
∗, TC∗) using non-linear optimization algorithms such as augmented Lagrangian

7 Obtain n∗ = bpn∗Nc, r∗ = b(1− q)n∗c, l∗ = b(1− q1)r∗c and X0
∗ = eT0

∗
to find the optimal design

(n∗, r∗, l∗, X0
∗)

The producer and the consumer through a joint agreement decides on the values of pα and pβ . But for

the purpose of our study we used the values from MIL-STD-105D (U D of Defense, 1963) which is a common

practice followed in the literature (Schneider, 1989; Balasooriya and Low, 2004; Bhattacharya et al, 2015).

Five different choices of pα and pβ are used for the study. α and β values are also kept at 0.05 and 0.1

respectively since these are the most favored choices of α and β found in the literature. For computational

purpose we have used the values of the parameters as µ = 5.2116 and σ = 0.4289. The values represent the
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estimated parameter values of a real life data set used in Section 6 of the paper. Since choice of parameters

is very important for designing a life test plan, it seems appropriate to use real life values for the parame-

ters. The expression for total cost is determined considering the following unit costs ca = 0.15 (unit cost of

acceptance), cr = 0.80 (unit cost of rejection), ct = 0.08 (unit cost of time consumption) and ci = 0.05 (unit

cost of inspection). The auglag function from nloptr package in R 3.2.2 was used to solve the problem.

The nloptr package in R addresses non-linear optimization problems with equality or inequality con-

straints which can be linear or non-linear in nature. The auglag within nloptr function uses augmented La-

grangian minimization algorithm for optimizing nonlinear objective functions with constraints. This method

modifies the given objective function by combining the constraint function to it. The modified objective

function is then fed to another optimization algorithm. Results are calculated for each pair of pα and pβ

values. The solutions thus obtained are stated in Table 1 below. In the above illustration the lot size (N)

is assumed to be 500 and the warranty period is also kept fixed. The effect in optimal design due change in

lot size and the effect due to change in warranty period is observed in Section 6.

Table 1: Type-I generalized hybrid censored life testing plans for given values of α, β, pα, and pβ .

(α, β) (0.05, 0.1)

(pα, pβ) k p∗n n∗ q∗ r∗ q1
∗ l∗ T0

∗ X0
∗ TC∗

(0.02090, 0.07420) 3.130 0.1282 64 0.1225 56 0.1264 49 3.0211 20.5146 28.0096

(0.0190, 0.05350) 3.607 0.2217 110 0.1763 91 0.0945 82 2.3033 10.0069 27.9443

(0.00284, 0.03110) 4.509 0.0679 33 0.1172 29 0.1176 26 3.0616 21.3616 28.2577

(0.00654, 0.04260) 3.963 0.0802 40 0.1520 34 0.1316 29 2.6059 13.5438 28.4667

(0.03190, 0.09420) 2.802 0.1464 73 0.1507 62 0.1486 52 2.0639 7.8769 28.0501

The results obtained in Table 1 can be explained using the following example: Consider a lot of size (N)

500. Before starting the process of finding the optimal sampling plan, (α, β) values are fixed at (0.05,0.1)

and the corresponding (pα, pβ) values are fixed at (0.02090, 0.07420). After using Algorithm 1 to the design

problem, the following optimal solution is obtained (T0
∗ = 3.0211, pn

∗ = 0.1282, q∗ = 0.1225, q1
∗ = 0.1264)

which after transformation translates to (X∗0 = 20.5146, n∗ = 64, r∗ = 56, l∗ = 49). So under the given

setup, for life testing of a lot, 64 (n∗) items are to be put on test simultaneously. The test is required to be

terminated either when 20.5146 (X∗0 ) units of time has elapsed or when 56 (r∗) failures are observed. But

the test can be terminated after 20.5146 time units only when a minimum of 49 (l∗) items on test has failed.

In case 20.5146 units of time elapse before 49 failures are observed, the test runs till 49th failure is recorded.

As mentioned earlier, Type-I hybrid censoring is a special case of generalized Type-I hybrid censoring.

When l∗ = 0, generalized Type-I hybrid censoring becomes Type-I hybrid censoring. In case of Type-I

hybrid censoring, the experiment gets terminated either when time (X0
∗) is reached or when (r∗th) failure is

observed. The concept of observing minimum l∗ failures before terminating the experiment is not considered

in this case which is one of the limitations of Type-I hybrid censoring as mentioned in Section 1. Considering

l∗ = 0 in the aforementioned setup, the results for Type-I hybrid censoring is obtained. The results thus

obtained are recorded in Table 2. It is interesting to observe that when the condition of terminating an

experiment after observing at least l∗ failures is relaxed, the values of X0
∗, n∗ and r∗ increases.
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Table 2: Type-I hybrid censored life testing plans when l∗ = 0.

(α, β) (0.05, 0.1)

(pα, pβ) k p∗n n∗ q∗ r∗ T0
∗ X0

∗ TC∗

(0.02090, 0.07420) 3.130 0.2725 136 0.1052 121 3.7397 42.0877 27.6796

(0.0190, 0.05350) 3.607 0.3300 165 0.1142 146 4.0414 56.9085 27.4661

(0.00284, 0.03110) 4.509 0.1468 73 0.0974 66 3.8428 46.6585 28.1433

(0.00654, 0.04260) 3.963 0.1643 82 0.1137 72 3.9088 49.8396 28.0771

(0.03190, 0.09420) 2.802 0.3384 169 0.1327 146 3.7794 43.7930 27.4366

In Table 3 CPU times (in seconds) for both Type-I generalized hybrid censored life testing plans and

Type-I hybrid censored life testing plans when l∗ = 0 is put forth. The CPU times are calculated using

proc.time function in R. proc.time returns user, system, and elapsed times for a process. The user time is the

time taken by CPU to execute the user instructions. The system time is the time taken by CPU to process

the instructions. User and system time together represent the CPU time involved to complete the process

on the other hand elapsed time is the total clock time required to complete the process. One observation

that can be made from Table 3 is that the user, system, and elapsed times for determining Type-I hybrid

censored life testing plans (HCLTP) is slightly higher than Type-I generalized hybrid censored life testing

plans (GHCLTP).

Table 3: Computational times for Type I GHCLTP and Type I HCLTP.

(α, β)=(0.05, 0.1) Type I GHCLTP Type I HCLTP

(pα, pβ) User time System time Elapsed time User time System time Elapsed time

(0.02090, 0.07420) 1418.46 1.67 1467.32 1465.79 4.49 1565.88

(0.0190, 0.05350) 2087.89 1.65 2127.62 2183.75 5.62 2292.95

(0.00284, 0.03110) 1036.73 2.79 1111.23 1175.49 3.64 1252.14

(0.00654, 0.04260) 1064.36 2.1 1103.24 1265.33 4.58 1380.56

(0.03190, 0.09420) 1474.55 2.12 1642.93 1663.13 5.5 1718.17

5 Monte Carlo simulation

In order to validate the model, a rigorous simulation study is conducted by considering producer’s risk.

This becomes important since the life testing plans are developed using distribution of µ̂−kσ̂ statistic which

is asymptotically normal. Hence to validate whether the model holds true for finite sample sizes, Monte

Carlo simulation is conducted for plans computed in Table 1. In order to compute the optimum design in

the above section L
′

= FT
−1(pα) is considered as acceptance criterion. For each solution set (n∗, r∗, l∗, T0

∗),

10, 000 data sets are generated keeping α, β, pα, pβ fixed. The maximum likelihood estimates are obtained

using equation (2.4) for each of the data sets. Now using the lot acceptance criterion µ̂− kσ̂ > L
′

for each

data set to reject the lots, the proportion of rejection should come close to α. The results can be seen in

Table 4 below. The method followed for simulation study is elaborated in Algorithm 2. The results validate

that the model works reasonably well even when finite sample sizes are considered.
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Table 4: Results of simulation study conducted for each set of solution in Table 1.

(α, β) (0.05, 0.1)

(pα, pβ) k n∗ r∗ l∗ X∗0 TC∗ α̂

(0.02090, 0.07420) 3.130 64 56 49 20.5146 28.0096 0.0471

(0.0190, 0.05350) 3.607 110 91 82 10.0069 27.9443 0.0509

(0.00284, 0.03110) 4.509 33 29 26 21.3616 28.2577 0.0537

(0.00654, 0.04260) 3.963 40 34 29 13.5438 28.4667 0.0469

(0.03190, 0.09420) 2.802 73 62 52 7.8769 28.0501 0.0517

Algorithm 2: Monte Carlo simulation.

Input: µ, σ, α, β, pα, pβ , k, T0
∗, n∗, r∗ and l∗

Output: α̂

1 Define FT
−1

2 Initialization: coefficient=matrix(0,rows=10,000, columns=2)

3 for i← 1 to 10, 000 by 1 do

4 for j ← 1 to n∗ by 1 do

5 πj ∼ Uniform(0, 1)

6 xj = FT
−1(πi)

7 Find MLEs of the parameters (µ̂, σ̂) using xjs

8 coefficient[i, ]=(µ̂, σ̂)

9 Initialization: count=0

10 for i← 1 to 10, 000 by 1 do

11 if coefficient [i, 1]-k×coefficient[i, 2] > FT
−1(pα) then

12 count=count+1

13 α̂ = 10,000−count
10,000

6 Sensitivity analysis

While going through the exercise of development of this life testing plan, the parameters pertaining to the

extreme value distribution of T played a major role. Therefore, to investigate the effect of mis-specification

of parameters in the optimum design and the total cost, a sensitivity analysis study is incorporated. For

the purpose of this study a historical real life data set from Lawless (2003) is used.

Each point of the data set represents the number of thousand miles at which different locomotive controls

have failed in a life testing experiment. The data set involves a sample size (n) of 96 and the test was aborted

when 135 thousand miles (X0) elapsed and 37 failures were observed. So as we can observe that number of

traversed miles is taken as a proxy for failure times for the life testing experiment. The data depicting the

failure times (in thousand of miles) of the units failed during the life test experiment is represented as follows:
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22.5, 37.5, 46.0, 48.5, 51.5, 53.0, 54.5, 57.5, 66.5, 68.0, 69.5, 76.5, 77.0, 78.5, 80.0, 81.5, 82.0, 83.0,

84.0, 91.5, 93.5, 102.5, 107.0, 108.5, 112.5, 113.5, 116.0, 117.0, 118.5, 119.0, 120.0, 122.5, 123.0, 127.5, 131.0,

132.5 and 134.0.

Given the data set, the parameter values (µ̂, σ̂) are estimated along with their corresponding

standard errors assuming the lifetime to follow Weibull distribution. The estimates (corresponding standard

errors) of µ and σ are found to be 5.2116(0.0898) and 0.4289(0.0664) respectively. In order to ensure

that the distributional assumption (to arrive at the estimates) holds true, PP plot is drawn. The PP plot

depicted in Figure 5 shows a good fit and hence validates that the distributional assumption holds true.

Figure 5: PP plot of Lawless (2003) data set using Weibull distribution.

For the purpose of sensitivity analysis, the estimates and the standard errors are used to arrive at three

sets of values (estimates ± standard error) for each parameter. Using α = 0.05, β = 0.1 and five pairs of

(pα, pβ) values from MIL-STD-105D (U D of Defense, 1963) the optimal design corresponding to each of the

nine set of parameters for each pair of (pα, pβ) is determined. The five pairs of (pα, pβ) values result in five

different OC curves depicted in Figure 6.

Figure 6: OC curves for different choices of (pα, pβ) values.
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From Table 5 in Appendix it can be observed that the optimal design changes with change in parameter

values although no pattern or trend in the change is visible. The result reinstates the importance of the

parameter values for optimal design plan. But on the other hand, a clear trend emerges from the values of

optimum cost which can be seen from Figure 7. As parameter µ increases keeping the value of σ fixed, the

optimum cost decreases which is evident from the downward sloping lines in the figure for every combination

of σ and (pα, pβ) values. Again for each (pα, pβ) it can be witnessed that the lines shift upwards parallely with

increase in the value of σ which signifies that the optimal cost increases with increase in σ if µ is kept fixed.

From the above results one can infer that maintaining higher average lifetime of a product with minimum

variance can help in reducing the cost incurred which includes warranty cost. (pα, pβ) values are mentioned

at the top of each graph in Figure 7 and σ values (representing their respective colors) are mentioned in the

legend.

Figure 7: Change in optimal cost due to change in parameters.

Since the transformation pn = n
N is made while solving the optimal design problem, the impact in the

optimal design due to change in lot size (N) is also analyzed. The results depicted in Table 6 in Appendix

summarizes that optimal design is not significantly impacted by the lot size although it is obvious for the

optimal cost to increase with the increase in lot size. Furthermore, one of the important aspects of the cost

function chosen for the analysis is the warranty cost, hence change in optimal design due to inclusion of

warranty cost is looked at. In Figure 8 it can be witnessed that the inclusion of warranty cost increases the

optimal censoring time while other variables (n, r, l) remain fairly consistent optimally. It can also be seen

that the change in the duration of warranty impacts the optimal total cost. The optimal cost increases with

increase in duration of warranty in almost a linear manner.
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Figure 8: Change in optimal design due to warranty (1,2,...,5 represents (pα, pβ) values in the same order as

it appears in Table 1).

8 Conclusion

In this work, a method is proposed to arrive at an optimum life testing plan under Type-I generalized

hybrid censoring. Weibull lifetime model is considered in the context of this study, however under the ambit

of the developed methodology other lifetime distributions of log-location scale family can also be used. The

work tries to formulate optimum reliability acceptance sampling plans from a management perspective which

makes it valuable in dealing with real life problems pertaining to product quality management. The proposed

approach will help in deciding on the acceptance of a batch or lot keeping the cost under consideration

which also includes warranty cost to be incurred. A cue from this model may also provide some input in

deciding the warranty policy for the future. An extensive simulation study is conducted to validate the

model proposed and the results obtained are as desired. To get further insights from the model a rigorous

sensitivity study is conducted. The results from the study highlights the importance of the parameters and

accesses the behavior of the optimal cost due to parameter changes. As warranty cost is included in the

objective function to develop a meaningful model for consumer durable products, the impact of its inclusion

in the model is looked at. Insights on the behavior of optimal cost due to change in period of warranty is

also highlighted.

Warranty claims lead to rework, as a result of which cost in terms of efforts, time and money has to

be borne by the company. Hence for consumer durable products it is important to ensure that the cost

due to warranty is induced in designing the acceptance sampling plan. Therefore, from quality management

perspective this study takes a small step forward in the direction of addressing a practical problem. As a

scope for future research, the proposed method can also be studied under different censoring schemes with

appropriate lifetime distributions. Many a times it may be realistic to assume that the parameters involved

arise out of some prior distribution because of uncertainty engaged in the parameter values. Therefore,

future research can also study the problem under a Bayesian setup.
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Appendix

Table 5: Results of sensitivity analysis using Lawless (2003) failure data of locomotive controls.

.
(pα, pβ) (µ̂, σ̂) pn

∗ n∗ q∗ r∗ q1
∗ l∗ T ∗0 X∗0 TC∗

(5.12173, 0.36253) 0.1286 64 0.1023 57 0.1025 51 3.0866 21.9034 27.6757

(5.21162, 0.36253) 0.1335 66 0.1311 58 0.1334 50 3.3431 28.3069 25.8861

(5.30151, 0.36253) 0.1357 67 0.1710 56 0.1891 45 3.1384 23.0668 24.8308

(5.12173, 0.42893) 0.1267 63 0.1240 55 0.1247 48 2.8143 16.6811 29.8627

(0.02090, 0.07420) (5.21162, 0.42893) 0.1281 64 0.1225 56 0.1269 49 3.0211 20.5146 28.0096

(5.30151, 0.42893) 0.1288 64 0.3158 44 0.2401 33 3.4389 31.1529 26.5535

(5.12173, 0.49534) 0.1278 63 0.2463 48 0.1281 42 2.9979 20.0453 32.1274

(5.21162, 0.49534) 0.1270 63 0.2874 45 0.2254 35 2.7085 15.0073 30.3198

(5.30151, 0.49534) 0.1288 64 0.1648 53 0.1547 45 3.0466 21.0451 28.4073

(5.12173, 0.36253) 0.2262 113 0.0884 103 0.0884 93 2.3246 10.2230 27.2180

(5.21162, 0.36253) 0.2349 117 0.0998 105 0.0999 95 2.2936 9.9109 25.8978

(5.30151, 0.36253) 0.2445 122 0.1346 105 0.1197 93 2.3138 10.1137 24.9106

(5.12173, 0.42893) 0.2171 108 0.1261 94 0.0885 86 2.2929 9.9039 29.3028

(0.0190, 0.05350) (5.21162, 0.42893) 0.2217 110 0.1763 91 0.0944 82 2.3032 10.0068 27.9442

(5.30151, 0.42893) 0.2267 113 0.1772 93 0.1582 78 2.0122 7.4798 26.6654

(5.12173, 0.49534) 0.2139 106 0.1394 92 0.1254 80 2.3860 10.8701 31.3623

(5.21162, 0.49534) 0.2141 107 0.1318 92 0.1263 81 2.1232 8.3582 29.7227

(5.30151, 0.49534) 0.2185 109 0.1723 90 0.1664 75 2.9473 19.0555 28.3160

(5.12173, 0.36253) 0.0574 28 0.0838 26 0.0929 23 3.0075 20.2364 27.6111

(5.21162, 0.36253) 0.0615 30 0.0997 27 0.1068 24 2.9180 18.5053 26.0701

(5.30151, 0.36253) 0.0577 28 0.1830 23 0.1536 19 2.9869 19.8248 24.6750

(5.12173, 0.42893) 0.0583 29 0.1423 25 0.1094 22 2.6372 13.9752 30.1249

(0.00284, 0.03110) (5.21162, 0.42893) 0.0678 33 0.1172 29 0.1176 26 3.0615 21.3616 28.2577

(5.30151, 0.42893) 0.0696 34 0.1927 28 0.1106 24 3.2513 25.8245 26.8612

(5.12173, 0.49534) 0.0651 32 0.1167 28 0.1267 25 2.9235 18.6074 32.1644

(5.21162, 0.49534) 0.0635 31 0.1849 25 0.1885 21 2.7514 15.6644 30.8612

(5.30151, 0.49534) 0.0705 35 0.1924 28 0.1262 24 2.5093 12.2974 29.3871

(5.12173, 0.36253) 0.0810 40 0.1643 33 0.1165 29 1.9908 7.3219 27.7129

(5.21162, 0.36253) 0.0807 40 0.2418 30 0.1337 26 2.0291 7.6069 26.3831

(5.30151, 0.36253) 0.0825 41 0.1794 33 0.1302 29 2.0155 7.5048 24.9165

(5.12173, 0.42893) 0.0813 40 0.2210 31 0.1726 26 1.9462 7.0025 30.2629

(0.00654, 0.04260) (5.21162, 0.42893) 0.0802 40 0.1520 34 0.1314 29 2.6059 13.5438 28.4666

(5.30151, 0.42893) 0.0832 41 0.1632 34 0.1754 28 2.1069 8.2234 26.7260

(5.12173, 0.49534) 0.0825 41 0.1485 35 0.1187 30 1.9453 6.9959 32.7969

(5.21162, 0.49534) 0.0503 25 0.1541 21 0.1478 18 2.4238 11.2895 31.0905

(5.30151, 0.49534) 0.0901 45 0.1352 38 0.1695 32 2.6110 13.6130 29.3001

(5.12173, 0.36253) 0.1461 73 0.1194 64 0.1023 57 2.0963 8.1362 27.5712

(5.21162, 0.36253) 0.1518 75 0.1182 66 0.1042 59 2.0608 7.8529 26.0635

(5.30151, 0.36253) 0.1527 76 0.1472 65 0.1513 55 2.0984 8.1537 25.0104

(5.12173, 0.42893) 0.1458 72 0.1205 64 0.1220 56 2.0094 7.4591 29.7772

(0.03190, 0.09420) (5.21162, 0.42893) 0.1464 73 0.1507 62 0.1486 52 2.0639 7.8769 28.0501

(5.30151, 0.42893) 0.1470 73 0.1671 61 0.1656 51 2.3076 10.0499 26.9617

(5.12173, 0.49534) 0.1446 72 0.1897 58 0.1574 49 2.0075 7.4447 31.7905

(5.21162, 0.49534) 0.1442 72 0.1437 61 0.1641 51 2.2112 9.1263 30.1562

(5.30151, 0.49534) 0.1443 72 0.2484 54 0.2380 41 2.0747 7.9627 28.7912
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Table 6: Optimal design for different lot sizes.

.

(pα, pβ) N pn
∗ n∗ q∗ r∗ q1

∗ l∗ T ∗0 X∗0 TC∗

200 0.3243 64 0.2185 50 0.1103 45 2.9875 19.8363 10.9387

300 0.2136 64 0.1306 55 0.1181 49 2.9990 20.0664 16.6291

(0.02090, 0.07420) 400 0.1604 64 0.1485 54 0.0910 49 2.9561 19.2229 22.3193

500 0.1281 64 0.1224 56 0.1264 49 3.0211 20.5146 28.0096

600 0.1048 62 0.1003 56 0.1035 50 3.0234 20.5616 33.9523

200 0.5524 110 0.1473 94 0.1188 83 2.3103 10.0782 10.6794

300 0.3676 110 0.1302 95 0.1286 83 2.4070 11.1012 16.4343

(0.0190, 0.05350) 400 0.2763 110 0.1299 96 0.1301 83 2.3491 10.4759 22.1893

500 0.2217 110 0.1762 91 0.0944 82 2.3032 10.0068 27.9442

600 0.1834 110 0.1290 95 0.1294 83 2.3929 10.9459 33.6992

200 0.1693 33 0.1039 30 0.1180 26 3.0548 21.2177 11.1649

300 0.1102 33 0.1162 29 0.1210 25 3.0019 20.1244 16.8625

(0.00284, 0.03110) 400 0.0846 33 0.1120 30 0.1057 26 3.0428 20.9652 22.5601

500 0.0678 33 0.1172 29 0.1176 26 3.0615 21.3616 28.2577

600 0.0558 33 0.1041 30 0.1037 26 3.0498 21.1114 33.9553

200 0.2125 42 0.2057 33 0.2136 26 2.6038 13.5154 11.1606

300 0.1363 40 0.2631 30 0.2150 23 2.6149 13.6661 16.9594

(0.00654, 0.04260) 400 0.1004 40 0.2701 29 0.2133 23 2.6912 14.7507 22.7130

500 0.0802 40 0.1520 34 0.1314 29 2.6059 13.5438 28.4666

600 0.0681 40 0.2588 30 0.2171 23 2.6401 14.0148 34.2203

200 0.3669 73 0.1067 65 0.2753 47 1.8676 6.4731 10.9072

300 0.2439 73 0.1372 63 0.2090 49 2.0961 8.1344 16.6214

(0.03190, 0.09420) 400 0.1845 73 0.1248 64 0.2071 51 1.8873 6.6016 22.3357

500 0.1464 73 0.1507 62 0.1486 52 2.0639 7.8769 28.0501

600 0.1229 73 0.1705 61 0.1791 50 1.8221 6.1847 33.7643
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